Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8007): 373-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448583

RESUMO

Pervasive transcriptional activity is observed across diverse species. The genomes of extant organisms have undergone billions of years of evolution, making it unclear whether these genomic activities represent effects of selection or 'noise'1-4. Characterizing default genome states could help understand whether pervasive transcriptional activity has biological meaning. Here we addressed this question by introducing a synthetic 101-kb locus into the genomes of Saccharomyces cerevisiae and Mus musculus and characterizing genomic activity. The locus was designed by reversing but not complementing human HPRT1, including its flanking regions, thus retaining basic features of the natural sequence but ablating evolved coding or regulatory information. We observed widespread activity of both reversed and native HPRT1 loci in yeast, despite the lack of evolved yeast promoters. By contrast, the reversed locus displayed no activity at all in mouse embryonic stem cells, and instead exhibited repressive chromatin signatures. The repressive signature was alleviated in a locus variant lacking CpG dinucleotides; nevertheless, this variant was also transcriptionally inactive. These results show that synthetic genomic sequences that lack coding information are active in yeast, but inactive in mouse embryonic stem cells, consistent with a major difference in 'default genomic states' between these two divergent eukaryotic cell types, with implications for understanding pervasive transcription, horizontal transfer of genetic information and the birth of new genes.


Assuntos
Genes Sintéticos , Genoma , Saccharomyces cerevisiae , Transcrição Gênica , Animais , Humanos , Camundongos , Cromatina/genética , Ilhas de CpG , Genes Sintéticos/genética , Genoma/genética , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Hipoxantina Fosforribosiltransferase/genética , Evolução Molecular
2.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418917

RESUMO

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Assuntos
Processamento Alternativo , Evolução Molecular , Hominidae , Proteínas com Domínio T , Cauda , Animais , Humanos , Camundongos , Processamento Alternativo/genética , Elementos Alu/genética , Modelos Animais de Doenças , Genoma/genética , Hominidae/anatomia & histologia , Hominidae/genética , Íntrons/genética , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Fenótipo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Cauda/anatomia & histologia , Cauda/embriologia , Éxons/genética
3.
Nature ; 623(7986): 423-431, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914927

RESUMO

Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , Engenharia Genética , Genoma , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Alelos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virologia , DNA/genética , Resistência Microbiana a Medicamentos/genética , Engenharia Genética/métodos , Genoma/genética , Células-Tronco Embrionárias Murinas/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidases/genética , Proteína Supressora de Tumor p53/genética
4.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37781588

RESUMO

Enhancer function is frequently investigated piecemeal using truncated reporter assays or single deletion analysis. Thus it remains unclear to what extent enhancer function at native loci relies on surrounding genomic context. Using the Big-IN technology for targeted integration of large DNAs, we analyzed the regulatory architecture of the murine Igf2/H19 locus, a paradigmatic model of enhancer selectivity. We assembled payloads containing a 157-kb functional Igf2/H19 locus and engineered mutations to genetically direct CTCF occupancy at the imprinting control region (ICR) that switches the target gene of the H19 enhancer cluster. Contrasting the activity of payloads delivered to the endogenous locus or to a safe harbor locus (Hprt) revealed that the Igf2/H19 locus includes additional, previously unknown long-range regulatory elements. Exchanging components of the Igf2/H19 locus with the well-studied Sox2 locus showed that the H19 enhancer cluster functioned poorly out of context, and required its native surroundings to activate Sox2 expression. Conversely, the Sox2 locus control region (LCR) could activate both Igf2 and H19 outside its native context, but its activity was only partially modulated by CTCF occupancy at the ICR. Analysis of regulatory DNA actuation across different cell types revealed that, while the H19 enhancers are tightly coordinated within their native locus, the Sox2 LCR acts more independently. We show that these enhancer clusters typify broader classes of loci genome-wide. Our results show that unexpected dependencies may influence even the most studied functional elements, and our synthetic regulatory genomics approach permits large-scale manipulation of complete loci to investigate the relationship between locus architecture and function.

5.
Mol Cell ; 83(7): 1140-1152.e7, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931273

RESUMO

Sox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression. We found that two DHSs comprising a handful of key TF recognition sequences were each sufficient for long-range activation of Sox2 expression. By contrast, three nearby DHSs were entirely context dependent, showing no activity alone but dramatically augmenting the activity of the autonomous DHSs. Our results highlight the role of context in modulating genomic regulatory element function, and our synthetic regulatory genomics approach provides a roadmap for the dissection of other genomic loci.


Assuntos
Regulação da Expressão Gênica , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Elementos Facilitadores Genéticos , Genômica , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição SOXB1/metabolismo
6.
iScience ; 25(6): 104438, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35692632

RESUMO

Overwriting counterselectable markers is an efficient strategy for removing wild-type DNA or replacing it with payload DNA of interest. Currently, one bottleneck of efficient genome engineering in mammals is the shortage of counterselectable (negative selection) markers that work robustly without affecting organismal developmental potential. Here, we report a conditional Piga knockout strategy that enables efficient proaerolysin-based counterselection in mouse embryonic stem cells. The conditional Piga knockout cells show similar proaerolysin resistance as full (non-conditional) Piga deletion cells, which enables the use of a PIGA transgene as a counterselectable marker for genome engineering purposes. Native Piga function is readily restored in conditional Piga knockout cells to facilitate subsequent mouse development. We also demonstrate the generality of our strategy by engineering a conditional knockout of endogenous Hprt. Taken together, our work provides a new tool for advanced mouse genome writing and mouse model establishment.

7.
FEBS J ; 288(21): 6112-6126, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33682350

RESUMO

Prostate cancer (PCa) is a very complex disease that is a major cause of death in men worldwide. Currently, PCa dependence on the androgen receptor (AR) has resulted in use of AR antagonists and antiandrogen therapies that reduce endogenous steroid hormone production. However, within two to three years of receiving first-line androgen deprivation therapy, the majority of patients diagnosed with PCa progress to castration-resistant prostate cancer (CRPC). There is an urgent need for therapies that are more durable than antagonism of the AR axis. Studies of runt-related transcription factors (RUNX) and their heterodimerization partner, core-binding factor subunit b (CBFß), are revealing that the RUNX family are drivers of CRPC. In this review, we describe what is presently understood about RUNX members in PCa, including what regulates and is regulated by RUNX proteins, and the role of RUNX proteins in the tumor microenvironment and AR signaling. We discuss the implications for therapeutically targeting RUNX, the potential for RUNX as PCa biomarkers, and the current pressing questions in the field.


Assuntos
Subunidades alfa de Fatores de Ligação ao Core/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Antagonistas de Androgênios/uso terapêutico , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...